Links zu weiteren Portalen

Seiteninterne Suche

Publications

    2025

  1. Eichenseer K, Balthasar U, Smart Christopher W, Kiessling W (2025) Temperature Effects on the Distribution of Aragonitic and Calcite-Secreting Epifaunal Bivalves. Journal of Biogeography 52:313-322. doi: https://doi.org/10.1111/jbi.15036
  2. Kiessling W, Dimitrijević D, Nussaibah B. Raja, Frühbeißer K, Vescogni A, Bosellini FR (2025) Census-based estimates of Mediterranean Oligocene–Miocene reef carbonate production. Facies 71:2. doi: 10.1007/s10347-024-00692-z
  3. Gavirneni, S., Ivany, L., Reddin, C.J. (in press). Burning calories, burning ocean: metabolic rate in bivalves as a predictor of extinction selectivity through time and during rapid global warming. Paleobiology
  4. Reddin, C.J., Landwehrs, J.P., Mathes, G.H., Ullmann, C.V., Feulner, G., and Aberhan, M. 2025. Marine species and assemblage change foreshadowed by their thermal bias over Early Jurassic warming. Nature Communications, 16(1), 1370.
  5. Götze, S., Reddin, C.J., Ketelsen, I., Busack, M., Lannig, G., Bock, C., and Pörtner, H.O. 2025. Cardiac performance mirrors the passive thermal tolerance range in the oyster Ostrea edulis. Journal of Experimental Biology, 228 doi.org/10.1242/jeb.249750
  6. Kiessling, W., Reddin, C.J., Dowding, E.M., Dimitrijević, D., Raja, N.B. and Kocsis, Á.T., 2025. Marine biological responses to abrupt climate change in deep time. Paleobiology, 51: 97-111. doi.org/10.1017/pab.2024.20
  7. 2024

  8. Dimitrijević D, Santodomingo N, Kiessling W (2024) Reef refugia in the aftermath of past episodes of global warming. Coral Reefs 43:1431-1442. doi: 10.1007/s00338-024-02548-y
  9. Sun, Y., Farnsworth, A., Joachimski, M.M., Wignall, P.B., Krystyn, L., Bond, D.P.G. , Ravida, D.C.G., Valdes, P.J., 2024. Mega El Niño instigated the end-Permian mass extinction. Science, 385, 1189-1195. doi: 10.1126/science.ado2030
  10. Mathes, G.H., Reddin, C.J., Kiessling, W., Antell, G.S., Saupe, E.E., & Steinbauer, M.J. (2024). Spatially Heterogeneous Responses of Planktonic Foraminiferal Assemblages Over 700,000 Years of Climate Change. Global Ecology and Biogeography, e13905. doi: 10.1111/geb.13905
  11. Bock, C., S. Götze, H.-O. Pörtner, and G. Lannig. 2024. Exploring the mechanisms behind swimming performance limits to ocean warming and acidification in the Atlantic king scallop, Pecten maximus. Frontiers in Ecology and Evolution 12. doi: 10.3389/fevo.2024.1347160
  12. Teichert, S., Reddin, C.J., & Wisshak, M. (2024). In situ decrease in rhodolith growth associated with Arctic climate change. Global Change Biology, 30(5), e17300. doi: 10.1111/gcb.17300
  13. Dimitrijević, D., N. B. Raja, and W. Kiessling. 2024. Corallite sizes of reef corals: decoupling of evolutionary and ecological trends. Paleobiology 50:43-53. doi: 10.1017/pab.2023.28
  14. Müller, J., Joachimski, M.M., Lehnert, O., Männik, P., Sun, Y.D., 2024. Phosphorus cycling during the Hirnantian glaciation. Palaeogeog. Palaeoecol. Palaeoclimat., 634, 111906. doi: 10.1016/j.palaeo.2023.111906
  15. Smith, J. A., N. B. Raja, T. Clements, D. Dimitrijević, E. M. Dowding, E. M. Dunne, B. M. Gee, P. L. Godoy, E. M. Lombardi, L. P. A. Mulvey, P. S. Nätscher, C. J. Reddin, B. Shirley, R. C. M. Warnock, and Á. T. Kocsis. 2023. Increasing the equitability of data citation in paleontology: capacity building for the big data future. Paleobiology:1-12. doi:10.1017/pab.2023.33
  16. 2023

  17. Foster WJ, Asatryan G, Rauzi S, Botting JP, Buchwald SZ, Lazarus DB, Isson T, Renaudie J, Kiessling W (2023) Response of Siliceous Marine Organisms to the Permian-Triassic Climate Crisis Based on New Findings From Central Spitsbergen, Svalbard. Paleoceanography and Paleoclimatology 38:e2023PA004766.
  18. Carobene, D., Bussert, R., Struck, U., Reddin, C.J., Aberhan, M. (2023) Influence of abiotic and biotic factors on benthic marine community composition, structure and stability: a multidisciplinary approach to molluscan assemblages from the Miocene of northern Germany, Palaeontology, doi: https://doi.org/10.1002/spp2.1496
  19. Na L, Kocsis ÁT, Li Q, Kiessling W. Coupling of geographic range and provincialism in Cambrian marine invertebrates. Paleobiology. 2023;49(2):284-295. doi:10.1017/pab.2022.36
  20. J. Müller, Y.D. Sun, F. Yang, M. Regelous, M.M. Joachimski, Manganous water column in the Tethys Ocean during the Permian-Triassic transition (2023) Global and Planetary Change, Volume 222, https://doi.org/10.1016/j.gloplacha.2023.104067
  21. Nätscher, P. S., Gliwa, J., De Baets, K., Ghaderi, A., & Korn, D. 2023. Exceptions to the temperature-size rule: no Lilliput effect in end-Permian ostracods (Crustacea) from Aras valley (NW Iran). Palaeontology, e12667. https://doi.org/doi: 10.1111/pala.12667
  22. Pörtner H-O, Scholes RJ, Arneth A, Barnes DKA, Burrows MT, Diamond SE, Duarte CM, Kiessling W, Leadley P, Managi S, McElwee P, Midgley G, Ngo HT, Obura D, Pascual U, Sankaran M, Shin YJ, Val AL (2023) Overcoming the coupled climate and biodiversity crises and their societal impacts. Science 380:eabl4881. doi: 10.1126/science.abl4881
  23. Raja NB, Pandolfi JM, Kiessling W (2023) Modularity explains large-scale reef booms in Earth’s history. Facies 69:15. doi: 10.1007/s10347-023-00671-w
  24. Reddin CJ, Aberhan M, Dimitrijević D, Dowding EM, Kocsis ÁT, Mathes G, Nätscher PS, Patzkowsky ME, Kiessling W (2023) Oversimplification risks too much: a response to ‘How predictable are mass extinction events? Royal Society Open Science 10:230400. doi: doi:10.1098/rsos.230400
  25. Zurell, D., Fritz, S. A., Rönnfeldt, A. and Steinbauer, M. J., 2023. Predicting extinctions with species distribution models. Cambridge Prisms: Extinction, 1: e8. doi.org/10.1017/ext.2023.5
  26. 2022

  27. A.H. Caruthers, S.M. Marroquín, D.R. Gröcke, M.L. Golding, M. Aberhan, T.R. Them, Y.P. Veenma, J.D. Owens, C.A. McRoberts, R.M. Friedman, J.M. Trop, D. Szűcs, J. Pálfy, M. Rioux, J.P. Trabucho-Alexandre, B.C. Gill (2022). New evidence for a long Rhaetian from a Panthalassan succession (Wrangell Mountains, Alaska) and regional differences in carbon cycle perturbations at the Triassic-Jurassic transition. Earth and Planetary Science Letters, Volume 577, https://www.sciencedirect.com/science/article/abs/pii/S0012821X21005185
  28. Cisneros, J. C., N. B. Raja, A. M. Ghilardi, E. M. Dunne, F. L. Pinheiro, O. R. Regalado Fernández, M. A. F. Sales, R. A. Rodríguez-de la Rosa, A. Y. Miranda-Martínez, S. González-Mora, R. A. M. Bantim, F. J. de Lima, and J. D. Pardo (2022) Digging deeper into colonial palaeontological practices in modern day Mexico and Brazil. Royal Society Open Science, https://doi.org/10.1098/rsos.210898
  29. De Baets, K., Jarochowska, E., Buchwald, S. Z., Klug, C., & Korn, D. (2022). Lithology controls ammonnoid size distributions. Palaios, 37(12), 744-754. https://doi.org/10.2110/palo.2021.063
  30. Gliwa, J., M. Wiedenbeck, M. Schobben, C. V. Ullmann, W. Kiessling, A. Ghaderi, U. Struck, and D. Korn. 2022. Gradual warming prior to the end-Permian mass extinction. Palaeontology 65:e12621. https://doi.org/10.1111/pala.12621
  31. Heuer, F., Leda, L., Moradi Salimi, H., Gliwa, J., Hairapetian, V., & Korn, D. 2022. The Permian-Triassic boundary section at Baghuk Mountain, Central Iran: carbonate microfacies and depositional environment. Palaeobiodiversity and Palaeoenvironments, 102(2), 331-350. https://doi.org/10.1007/s12549-021-00511-1
  32. Dal Corso, J., Song, H., Callegaro, S., Chu, D., Sun, Y., Hilton, J., Grasby, S.E., Joachimski, M.M., Wignall, P.B. (2022). Environmental crises at the Permian-Triassic mass extinction. Nature Reviews Earth & Environment, https://doi.org/10.1038/s43017-021-00259-4
  33. Grossman, E.L, Joachimski, M.M. (2022): Ocean temperatures through the Phanerozoic reassessed. Scientific Reports, 8938, https://doi.org/10.1038/s41598-022-11493-1
  34. Joachimski, M.M., Müller, J., Gallagher, T.M., Mathes, G., Chu, D.L., Mouraviev, F., Silantiev, V., Sun, Y.D., Tong, J.N. (2022). Five million years of high atmospheric CO2 in the aftermath of the Permian-Triassic extinction. Geology,  https://doi.org/10.1130/G49714.1
  35. Müller, J., Sun, Y., Yang, F., Fantasia, A., Joachimski, M.M. (2022): Phosphorus cycle and primary productivity changes in the Tethys Ocean during the Permian-Triassic transition: Starving Marine Ecosystems. Frontiers in Earth Science, 10, 832308, https://doi.org/10.3389/feart.2022.832308
  36. Raja, N. B., D. Dimitrijević, M. C. Krause, and W. Kiessling. 2022. Ancient Reef Traits, a database of trait information for reef-building organisms over the Phanerozoic. Scientific Data 9:425.1 doi: 0.1038/s41597-022-01486-0
  37. Reddin C.J., Decottignies P., Bacouillard L., Barillé L., Dubois S.F., Echappé C., Gernez P., Jesus B., Méléder V., Nätscher P.S., Turpin V., Zeppilli D., Zwerschke N., Brind’Amour A., Cognie B. (2022). Extensive spatial impacts of oyster reefs on an intertidal mudflat community via predator facilitation. Communications Biology (in press) https://doi.org/10.1038/s42003-022-03192-4
  38. Reddin, C. J., Aberhan, M., Raja, N. B., & Kocsis, Á. T. (2022). Global warming generates predictable extinctions of warm-and cold-water marine benthic invertebrates via thermal habitat loss. Global Change Biology 28(19), 5793-5807.
  39. Siqueira, A.C., Kiessling, W., Bellwood, D.R. (2022). Fast-growing species shape the evolution of reef corals. Nature Communications 13, 2426, https://doi.org/10.1038/s41467-022-30234-6.
  40. Staples, T.L., Kiessling, W., Pandolfi, J.M., (2022). Emergence patterns of locally novel plant communities driven by past climate change and modern anthropogenic impacts. Ecology Letters, https://onlinelibrary.wiley.com/doi/abs/10.1111/ele.14016
  41. Yang, F., Sun, Y.D., Frings, P.J., Luo, L., E, J.W., Wang, L.N., Huang, Y.F., Wang, T., Müller, J., Xie, S.C. (2022). Collapse of Late Permian chert factories in the equatorial Tethys and the nature of the Early Triassic chert gap. Earth and Planetary Science Letters, 600, 117861. https://doi.org/10.1016/j.epsl.2022.117861 
  42. Zhang, Z.T., Joachimski, M.M., Grasby, S.E., Sun, Y.D. (2022). Intensive ocean anoxia and large δ13Ccarb perturbations during the Carnian Humid Episode (Late Triassic ) in Southwest China. Global and Planetary Change, 217, 103942. https://doi.org/10.1016/j.gloplacha.2022.10394
  43. 2021

  44. Beck, S.M., De Baets, K., Klug, C., Korn, D. (2021) Analysis of septal spacing and septal crowding in Devonian and Carboniferous ammonoids. Swiss Journal of Palaeontology 140: 21. https://doi.org/10.1186/s13358-021-00235-x
  45. Bond, D.P.G., Sun Y. (2021). Global warming and mass extinctions associated with Lage Igneous Province Volcanism. In: Ernst, R.E., Dickson, A.J., Becker, A. (eds.): Large Igneous Provinces: A driver of Global Environmental and Biotic changes, Geophysical Monograph, 255, 85-102. https://doi.org/10.1002/9781119507444.ch3
  46. Cisneros, J. C., A. M. Ghilardi, N. B. Raja, and P. P. Stewens (2021). The moral and legal imperative to return illegally exported fossils. Nat Ecol Evolhttps://doi.org/10.1038/s41559-021-01588-9
  47. Dai, X., Korn, D., & Song, H. 2021. Morphological selectivity of the Permian-Triassic ammonoid mass extinction. Geology, 49(9), 1112-1116. https://doi.org/10.1130/G48788.1
  48. De Baets, K., Nätscher, P.S., Rita, P., Fara, E., Neige, P., Bardin, J., Dera, G., Duarte, L. V. , Hughes, Z., Laschinger, P., García-Ramos, J.  C., Piñuela, L., Übelacker, C., Weis, R. (2021) The impact of the Pliensbachian–Toarcian crisis on belemnite assemblages and size distribution. Swiss Journal of Palaeontology 140: 25. https://doi.org/10.1186/s13358-021-00242-y
  49. Ghanizadeh Tabrizi, N., Ghaderi, A., Ashouri, A. R., & Korn, D. 2021. A new record of the Permian ammonoid family Cyclolobidae from Julfa (NW Iran). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 302(2), 221-230. https://doi.org/10.1127/njgpa/2021/1029
  50. Gliwa, J., Forel, M. B., Crasquin, S., Ghaderi, A., & Korn, D. 2021. Ostracods from the end‐Permian mass extinction in the Aras Valley section (north‐west Iran). Papers in Palaeontology, 7(2), 1003-1042. https://doi.org/10.1002/spp2.1330
  51. Klug, C., Schweigert, G., Hoffmann, R., Weis, R.,  De Baets, K. (2021) Fossilized leftover falls as sources of palaeoecological data: a ‘pabulite’ comprising a crustacean, a belemnite and a vertebrate from the Early Jurassic Posidonia Shale. Swiss Journal of Palaeontology 140: 10. https://doi.org/10.1186/s13358-021-00225-z
  52. Kocsis, Á.T., Zhao, Q., Costello, M.J., Kiessling, W. (2021). Not all biodiversity richspots are climate refugia. Biogeosciences 18, 6567-6578. https://bg.copernicus.org/preprints/bg-2021-179/
  53. Kocsis, Á. T., Reddin, C. J., Scotese, C. R., Valdes, P. J., & Kiessling, W. (2021). Increase in marine provinciality over the last 250 million years governed more by climate change than plate tectonics. Proceedings of the Royal Society B, 288, 20211342. https://royalsocietypublishing.org/doi/abs/10.1098/rspb.2021.1342
  54. Korn, D., Hairapetian, V., Ghaderi, A., Leda, L., Schobben, M., & Akbari, A. 2021. The Changhsingian (Late Permian) ammonoids from Baghuk Mountain (Central Iran). European Journal of Taxonomy, 776, 1-106. https://doi.org/10.5852/ejt.2021.776.1559
  55. Korn, D., Leda, L., Heuer, F., Moradi Salimi, H., Farshid, E., Akbari, A., Schobben, M., Ghaderi, A., Struck, U., Gliwa, J., Ware, D., & Hairapetian, V. 2021. Baghuk Mountain (Central Iran): high-resolution stratigraphy of a continuous Central Tethyan Permian-Triassic boundary section. Fossil Record, 24, 171-192. https://doi.org/10.5194/fr-24-171-2021
  56. Manes, S., Costello, M.J., Beckett, H., Debnath, A., Devenish-Nelson, E., Grey, K.-A., Jenkins, R., Khan, T.M., Kiessling, W., Krause, C., Maharaj, S.S., Midgley, G.F., Price, J., Talukdar, G., Vale, M.M. (2021). Endemism increases species’ climate change risk in areas of global biodiversity importance. Biological Conservation 257, 109070. https://doi.org/10.1016/j.biocon.2021.109070
  57. Mathes, G.H., Kiessling, W., Steinbauer, M.J. (2021). Deep-time climate legacies affect origination rates of marine genera. Proceedings of the National Academy of Sciences 118, e2105769118.https://www.pnas.org/doi/10.1073/pnas.2105769118
  58. Mathes, G.H., van Dijk, J., Kiessling, W., Steinbauer, M.J. (2021). Extinction risk controlled by interaction of long-term and short-term climate change. Nature Ecology & Evolution 5, 304-310. https://doi.org/10.1038/s41559-020-01377-w
  59. Nätscher, P.S., Dera, G., Reddin, C.J., Rita, P., De Baets, K. (2021). Morphological response accompanying size reduction of belemnites during an Early Jurassic hyperthermal event modulated by life history. Scientific Reports, 11, 14480.https://doi.org/10.1038/s41598-021-93850-0
  60. Nogué, S., Santos, A.M.C., Birks, H. J.B., Björck, S., Castilla-Beltrán, A., Connor, S., de Boer, E.J., de Nascimento, L., Felde, V.A., Fernández-Palacios, J.-M., Froyd, C.A., Haberle, S.G., Hooghiemstra, H., Ljung, K., Norder, S.J., Peñuelas, J., Prebble, M., Stevenson, J., Whittaker, R.J., Willis, K. J., Wilmshurst, J. M., Steinbauer, M. J., 2021 The human dimension of biodiversity changes on islands. Science, 372 (6541) 488-491. doi.org/10.1126/science.abd6706
  61. Rita, P., Weis, R., Duarte, L.V., De Baets, K. (2021). Taxonomical diversity and palaeobiogeographical affinity of belemnites from the Pliensbachian–Toarcian GSSP (Lusitanian Basin, Portugal). Papers in Palaeontology, 7, 1321-1349. https://doi.org/10.1002/spp2.1343
  62. Raja, N.B., Lauchstedt, A., Pandolfi, J.M., Kim, S.W., Budd, A.F., and Kiessling, W. (2021). Morphological traits of reef corals predict extinction risk but not conservation status. Global Ecology and Biogeography 30 (8) geb.13321 1-12. https://doi.org/10.1111/geb.13321
  63. Raja, N.B., Dunne, E.M., Matiwane, A. et al. Colonial history and global economics distort our understanding of deep-time biodiversity. Nat Ecol Evol 6, 145–154 (2022). https://doi.org/10.1038/s41559-021-01608-8
  64. Raja, N.B., Kiessling, W. (2021), Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton, Proc. R. Soc. B., http://doi.org/10.1098/rspb.2021.0545
  65. Sun, Y.D., Richoz, S., Krystyn, L., Grasby, S.E., Chen, Y.L., Banerjee, D., Joachimski, M.M. (2021). Integrated bio-chemostratigraphy of Lower and Middle Triassic marine successions at Spiti in the Indian Himalaya. Global and Planetary Change, 196, 103363
  66. Reddin, C. J., Kocsis, Á. T., Aberhan, M., & Kiessling, W. (2021). Victims of ancient hyperthermal events herald the fates of marine clades and traits under global warming. Global Change Biology 27 (4), 868-878. https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.15434
  67. 2020

  68. Antell, G. S., Kiessling, W., Aberhan, M., & Saupe, E. E. (2020). Marine Biodiversity and Geographic Distributions Are Independent on Large Scales. Current Biology30(1), 115-121. https://www.sciencedirect.com/science/article/abs/pii/S096098221931437X?via%3Dihub
  69. Piazza, V., Ullmann, C. V., & Aberhan, M. (2020). Ocean warming affected faunal dynamics of benthic invertebrate assemblages across the Toarcian Oceanic Anoxic Event in the Iberian Basin (Spain). PLoS ONE 15(12): e0242331. https://doi.org/10.1371/journal.pone.0242331
  70. Reddin, C. J., Kocsis, Á. T., & Kiessling, W. (2020). Marine invertebrate migrations trace climate change over 450 million years. Global Ecology and Biogeography29(7), 1280-1282. https://onlinelibrary.wiley.com/doi/full/10.1111/geb.13114
  71. Eymann, C., Götze, S., Bock, C., Guderley, H., Knoll, A. H., Lannig, G., Sokolova, I.M., Aberhan, M. and Pörtner, H. O. (2020). Thermal performance of the European flat oyster, Ostrea edulis (Linnaeus, 1758)—explaining ecological findings under climate change. Marine Biology, 167(2), 1-15. https://epic.awi.de/id/eprint/51493/1/CE_SG_EurOyster_paleophys_MaBi20.pdf
  72. Götze, S., Bock, C., Eymann, C., Lannig, G., Steffen, J. B., & Pörtner, H. O. (2020). Single and combined effects of the “Deadly trio” hypoxia, hypercapnia and warming on the cellular metabolism of the great scallop Pecten maximus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 110438. https://www.sciencedirect.com/science/article/abs/pii/S1096495920300324, PDF
  73. Foster, W. J., Garvie, C. L., Weiss, A. M., Muscente, A. D., Aberhan, M., Counts, J. W., & Martindale, R. C. (2020). Resilience of marine invertebrate communities during the early Cenozoic hyperthermals. Scientific reports, 10(1), 1-11. https://www.nature.com/articles/s41598-020-58986-5
  74. Gliwa, J., Ghaderi, A., Leda, L., Schobben, M., Tomás, S., Foster, W. J., Forel, M.B., Tabrizi, N.G., Grasby, S.E., Struck, U., Ashouri, A. R. & Korn, D. (2020). Aras Valley (northwest Iran): high-resolution stratigraphy of a continuous central Tethyan Permian–Triassic boundary section. Mitteilungen aus dem Museum für Naturkunde in Berlin. Fossil Record, 23(1), 33-69. https://doi.org/10.5194/fr-23-33-2020
  75. Joachimski, M. M., Alekseev, A. S., Grigoryan, A., & Gatovsky, Y. A. (2020). Siberian Trap volcanism, global warming and the Permian-Triassic mass extinction: New insights from Armenian Permian-Triassic sections. Bulletin132(1-2), 427-443. https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/132/1-2/427/571663/Siberian-Trap-volcanism-global-warming-and-the?redirectedFrom=fulltext
  76. Piazza, V., Ullmann, C. V., & Aberhan, M. (2020). Temperature-related body size change of marine benthic macroinvertebrates across the early toarcian Anoxic event. Scientific reports10(1), 1-13. https://www.nature.com/articles/s41598-020-61393-5
  77. Reddin, C. J., Nätscher, P. S., Kocsis, Á. T., Pörtner, H. O., & Kiessling, W. (2020). Marine clade sensitivities to climate change conform across timescales. Nature Climate Change10(3), 249-253. https://www.nature.com/articles/s41558-020-0690-7
  78. Foster, W. J., Gliwa, J., Lembke, C., Pugh, A. C., Hofmann, R., Tietje, M., Varela, S., Foster, L.C., Korn, D. & Aberhan, M. (2020). Evolutionary and ecophenotypic controls on bivalve body size distributions following the end-Permian mass extinction. Global and Planetary Change185, 103088. https://www.sciencedirect.com/science/article/pii/S0921818119305739?via%3Dihub
  79. Sun, Y. D., Orchard, M. J., Kocsis, Á. T., & Joachimski, M. M. (2020). Carnian–Norian (Late Triassic) climate change: Evidence from conodont oxygen isotope thermometry with implications for reef development and Wrangellian tectonics. Earth and Planetary Science Letters534, 116082. https://www.sciencedirect.com/science/article/abs/pii/S0012821X2030025X?via%3Dihub
  80. Ullmann, C. V., Boyle, R., Duarte, L. V., Hesselbo, S. P., Kasemann, S. A., Klein, T., Lenton, T.M., Piazza, V. & Aberhan, M. (2020). Warm afterglow from the toarcian oceanic Anoxic event drives the success of deep-adapted brachiopods. Scientific reports, 10(1), 1-11. https://www.nature.com/articles/s41598-020-63487-6
  81. 2019

  82. Schobben, M., Gravendyck, J., Mangels, F., Struck, U., Bussert, R., Kürschner, W. M.,  Korn, D., Sander, P.M. & Aberhan, M. (2019). A comparative study of total organic carbon-δ13C signatures in the Triassic–Jurassic transitional beds of the Central European Basin and western Tethys shelf seas. Newsletters on Stratigraphy52(4), 461-486. https://www.schweizerbart.de/papers/nos/detail/52/90527/A_comparative_study_of_total_organic_carbon_13C_si?l=EN
  83. Reddin, C. J., Kocsis, Á. T., & Kiessling, W. (2019). Climate change and the latitudinal selectivity of ancient marine extinctions. Paleobiology45(1), 70-84. https://www.cambridge.org/core/journals/paleobiology/article/abs/climate-change-and-the-latitudinal-selectivity-of-ancient-marine-extinctions/E2840B622F054ACD7D051A106E9E9D9E, PDF
  84. Rita, P., Nätscher, P., Duarte, L. V., Weis, R., & De Baets, K. (2019). Mechanisms and drivers of belemnite body-size dynamics across the Pliensbachian–Toarcian crisis. Royal Society Open Science6(12), 190494. https://royalsocietypublishing.org/doi/10.1098/rsos.190494
  85. Korn, D., Ghaderi, A., & Tabrizi, N. G. (2019). Early Changhsingian (Late Permian) ammonoids from NW Iran.
    https://www.schweizerbart.de/papers/njgpa/detail/293/91491/Early_Changhsingian_Late_Permian_ammonoids_from_NW?af=crossref
  86. Korn, D., Ghaderi, A., Ghanizadeh Tabrizi, N., & Gliwa, J. (2020). The morphospace of Late Permian coiled nautiloids. Lethaia53(2), 154-165. https://onlinelibrary.wiley.com/doi/10.1111/let.12348
  87. Miao, L., Dai, X., Korn, D., Brayard, A., Chen, J., Liu, X., & Song, H. (2019). A Changhsingian (late Permian) nautiloid assemblage from Gujiao, South China. Papers in Palaeontology. https://www.palass.org/publications/papers-palaeontology/7/1/article_pp329-351
  88. Piazza, V., Duarte, L. V., Renaudie, J., & Aberhan, M. (2019). Reductions in body size of benthic macroinvertebrates as a precursor of the early Toarcian (Early Jurassic) extinction event in the Lusitanian Basin, Portugal. Paleobiology45(2), 296-316. https://www.cambridge.org/core/journals/paleobiology
  89. Sun, Y. D., Zulla, M. J., Joachimski, M. M., Bond, D. P. G., Wignall, P. B., Zhang, Z. T., & Zhang, M. H. (2019). Ammonium ocean following the end-Permian mass extinction. Earth and Planetary Science Letters518, 211-222. https://www.sciencedirect.com/science/article/abs/pii/S0012821X19302407
  90. Korn, D., & Ghaderi, A. (2019). The Late Permian araxoceratid ammonoids: a case of repetitive temporal and spatial unfolding of homoplastic conch characters. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen292(3), 339-350. https://www.schweizerbart.de/papers/njgpa/detail/292/91157/The_Late_Permian_araxoceratid_ammonoids_a_case_of_?af=crossref
  91. Kocsis, A. T., Reddin, C. J., Alroy, J., & Kiessling, W. (2019). The R package divDyn for quantifying diversity dynamics using fossil sampling data. Methods in Ecology and Evolution10(5), 735-743. https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.13161
  92. Sun, Y. D., Richoz, S., Krystyn, L., Zhang, Z. T., & Joachimski, M. M. (2019). Perturbations in the carbon cycle during the Carnian Humid Episode: carbonate carbon isotope records from southwestern China and northern Oman. Journal of the Geological Society176(1), 167-177. https://pubs.geoscienceworld.org/
  93. 2018

  94. Rita, P., De Baets, K., & Schlott, M. (2018). Rostrum size differences between Toarcian belemnite battlefields. Mitteilungen aus dem Museum für Naturkunde in Berlin. Fossil Record21(1), 171.
  95. Kiessling, W., Schobben, M., Ghaderi, A., Hairapetian, V., Leda, L., & Korn, D. (2018). Pre–mass extinction decline of latest Permian ammonoids. Geology46(3), 283-286.
  96. Kocsis, Á. T., Reddin, C. J., & Kiessling, W. (2018). The stability of coastal benthic biogeography over the last 10 million years. Global Ecology and Biogeography27(9), 1106-1120.
  97. Kocsis, Á. T., Reddin, C. J., & Kiessling, W. (2018). The biogeographical imprint of mass extinctions. Proceedings of the Royal Society B: Biological Sciences285(1878), 20180232.
  98. Schobben, M., Heuer, F., Tietje, M., Ghaderi, A., Korn, D., Korte, C., & Wignall, P. B. (2018). Chemostratigraphy Across the Permian‐Triassic Boundary: The Effect of Sampling Strategies on Carbonate Carbon Isotope Stratigraphic Markers. Chemostratigraphy Across Major Chronological Boundaries, 159-181.
  99. 2017

  100. Schobben, M., Van De Velde, S., Gliwa, J., Leda, L., Korn, D., Struck, U., Vinzenz Ullman, C., Hairapetian, V., Ghaderi, A., Korte, C. & Newton, R. J. (2017). Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation, Climate of the Past, 13 (11), 1635-1659. https://doi.org/10.5194/cp-13-1635-2017
  101. Martindale, R. C., & Aberhan, M. (2017). Response of macrobenthic communities to the Toarcian Oceanic Anoxic Event in northeastern Panthalassa (Ya Ha Tinda, Alberta, Canada). Palaeogeography, Palaeoclimatology, Palaeoecology478, 103-120.
  102. 2016

  103. Dera, G., Toumoulin, A., & De Baets, K. (2016). Diversity and morphological evolution of Jurassic belemnites from South Germany. Palaeogeography, palaeoclimatology, palaeoecology457, 80-97.

Our Social Media

No feed found with the ID 1. Go to the All Feeds page and select an ID from an existing feed.