2024
- Sun, Y., Farnsworth, A., Joachimski, M.M., Wignall, P.B., Krystyn, L., Bond, D.P.G. , Ravida, D.C.G., Valdes, P.J., 2024. Mega El Niño instigated the end-Permian mass extinction. Science, 385, 1189-1195. doi: 10.1126/science.ado2030
- Mathes, G.H., Reddin, C.J., Kiessling, W., Antell, G.S., Saupe, E.E., & Steinbauer, M.J. (2024). Spatially Heterogeneous Responses of Planktonic Foraminiferal Assemblages Over 700,000 Years of Climate Change. Global Ecology and Biogeography, e13905. doi: 10.1111/geb.13905
- Bock, C., S. Götze, H.-O. Pörtner, and G. Lannig. 2024. Exploring the mechanisms behind swimming performance limits to ocean warming and acidification in the Atlantic king scallop, Pecten maximus. Frontiers in Ecology and Evolution 12. doi: 10.3389/fevo.2024.1347160
- Teichert, S., Reddin, C.J., & Wisshak, M. (2024). In situ decrease in rhodolith growth associated with Arctic climate change. Global Change Biology, 30(5), e17300. doi: 10.1111/gcb.17300
- Dimitrijević, D., N. B. Raja, and W. Kiessling. 2024. Corallite sizes of reef corals: decoupling of evolutionary and ecological trends. Paleobiology 50:43-53. doi: 10.1017/pab.2023.28
- Müller, J., Joachimski, M.M., Lehnert, O., Männik, P., Sun, Y.D., 2024. Phosphorus cycling during the Hirnantian glaciation. Palaeogeog. Palaeoecol. Palaeoclimat., 634, 111906. doi: 10.1016/j.palaeo.2023.111906
- Smith, J. A., N. B. Raja, T. Clements, D. Dimitrijević, E. M. Dowding, E. M. Dunne, B. M. Gee, P. L. Godoy, E. M. Lombardi, L. P. A. Mulvey, P. S. Nätscher, C. J. Reddin, B. Shirley, R. C. M. Warnock, and Á. T. Kocsis. 2023. Increasing the equitability of data citation in paleontology: capacity building for the big data future. Paleobiology:1-12. doi:10.1017/pab.2023.33
- Carobene, D., Bussert, R., Struck, U., Reddin, C. J., & Aberhan, M. (2023). Influence of abiotic and biotic factors on benthic marine community composition, structure and stability: a multidisciplinary approach to molluscan assemblages from the Miocene of northern Germany. Papers in Palaeontology, 9(3), e1496.
- Cooke, R., Sayol, F., Andermann, T., Blackburn, T. M., Steinbauer, M. J., Antonelli, Al., Faurby, S., 2023. Undiscovered bird extinctions obscure the true magnitude of human-driven extinction waves. Nature Communications, 14(1) 8116. doi.org/10.1038/s41467-023-43445-2.
- Hodapp D, Roca IT, Fiorentino D, Garilao C, Kaschner K, Kesner-Reyes K, Schneider B, Segschneider J, Kocsis ÁT, Kiessling W, Brey T, Froese R (2023) Climate change disrupts core habitats of marine species. Global Change Biology 29 doi: 10.1111/gcb.16612
- Kiessling W, Smith JA, Raja NB (2023) Improving the relevance of paleontology to climate change policy. Proc Natl Acad Sci USA 120:e2201926119. doi: 10.1073/pnas.2201926119
- Müller, J., Sun, Y.D., Yang, F., Regelous, M., Joachimski, M.M. (2023). Manganous water column in the Tethys Ocean during the Permian-Triassic transition. Global Planetary Change, https://doi.org/10.1016/j.gloplacha.2023.104067
- Nätscher, P. S., Gliwa, J., De Baets, K., Ghaderi, A., & Korn, D. 2023. Exceptions to the temperature-size rule: no Lilliput effect in end-Permian ostracods (Crustacea) from Aras valley (NW Iran). Palaeontology, e12667. https://doi.org/doi: 10.1111/pala.12667
- Pörtner H-O, Scholes RJ, Arneth A, Barnes DKA, Burrows MT, Diamond SE, Duarte CM, Kiessling W, Leadley P, Managi S, McElwee P, Midgley G, Ngo HT, Obura D, Pascual U, Sankaran M, Shin YJ, Val AL (2023) Overcoming the coupled climate and biodiversity crises and their societal impacts. Science 380:eabl4881. doi: 10.1126/science.abl4881
- Raja NB, Pandolfi JM, Kiessling W (2023) Modularity explains large-scale reef booms in Earth’s history. Facies 69:15. doi: 10.1007/s10347-023-00671-w
- Reddin CJ, Aberhan M, Dimitrijević D, Dowding EM, Kocsis ÁT, Mathes G, Nätscher PS, Patzkowsky ME, Kiessling W (2023) Oversimplification risks too much: a response to ‘How predictable are mass extinction events? Royal Society Open Science 10:230400. doi: doi:10.1098/rsos.230400
- Zurell, D., Fritz, S. A., Rönnfeldt, A. and Steinbauer, M. J., 2023. Predicting extinctions with species distribution models. Cambridge Prisms: Extinction, 1: e8. doi.org/10.1017/ext.2023.5
- A.H. Caruthers, S.M. Marroquín, D.R. Gröcke, M.L. Golding, M. Aberhan, T.R. Them, Y.P. Veenma, J.D. Owens, C.A. McRoberts, R.M. Friedman, J.M. Trop, D. Szűcs, J. Pálfy, M. Rioux, J.P. Trabucho-Alexandre, B.C. Gill (2022). New evidence for a long Rhaetian from a Panthalassan succession (Wrangell Mountains, Alaska) and regional differences in carbon cycle perturbations at the Triassic-Jurassic transition. Earth and Planetary Science Letters, Volume 577, https://www.sciencedirect.com/science/article/abs/pii/S0012821X21005185
- Cisneros, J. C., N. B. Raja, A. M. Ghilardi, E. M. Dunne, F. L. Pinheiro, O. R. Regalado Fernández, M. A. F. Sales, R. A. Rodríguez-de la Rosa, A. Y. Miranda-Martínez, S. González-Mora, R. A. M. Bantim, F. J. de Lima, and J. D. Pardo (2022) Digging deeper into colonial palaeontological practices in modern day Mexico and Brazil. Royal Society Open Science 9, 210898. https://doi.org/10.1098/rsos.210898
- De Baets, K., Jarochowska, E., Buchwald, S. Z., Klug, C., & Korn, D. (2022). Lithology controls ammonnoid size distributions. Palaios, 37(12), 744-754. https://doi.org/10.2110/palo.2021.063
- Gliwa, J., M. Wiedenbeck, M. Schobben, C. V. Ullmann, W. Kiessling, A. Ghaderi, U. Struck, and D. Korn. 2022. Gradual warming prior to the end-Permian mass extinction. Palaeontology 65:e12621. https://doi.org/10.1111/pala.12621
- Heuer, F., Leda, L., Moradi Salimi, H., Gliwa, J., Hairapetian, V., & Korn, D. 2022. The Permian-Triassic boundary section at Baghuk Mountain, Central Iran: carbonate microfacies and depositional environment. Palaeobiodiversity and Palaeoenvironments, 102(2), 331-350. https://doi.org/10.1007/s12549-021-00511-1
- Dal Corso, J., Song, H., Callegaro, S., Chu, D., Sun, Y., Hilton, J., Grasby, S.E., Joachimski, M.M., Wignall, P.B. (2022). Environmental crises at the Permian-Triassic mass extinction. Nature Reviews Earth & Environment, https://doi.org/10.1038/s43017-021-00259-4
- Grossman, E.L, Joachimski, M.M. (2022): Ocean temperatures through the Phanerozoic reassessed. Scientific Reports, 8938, https://doi.org/10.1038/s41598-022-11493-1
- Joachimski, M.M., Müller, J., Gallagher, T.M., Mathes, G., Chu, D.L., Mouraviev, F., Silantiev, V., Sun, Y.D., Tong, J.N. (2022). Five million years of high atmospheric CO2 in the aftermath of the Permian-Triassic extinction. Geology, https://doi.org/10.1130/G49714.1
- Müller, J., Sun, Y., Yang, F., Fantasia, A., Joachimski, M.M. (2022): Phosphorus cycle and primary productivity changes in the Tethys Ocean during the Permian-Triassic transition: Starving Marine Ecosystems. Frontiers in Earth Science, 10, 832308, https://doi.org/10.3389/feart.2022.832308
- Raja, N. B., D. Dimitrijević, M. C. Krause, and W. Kiessling. 2022. Ancient Reef Traits, a database of trait information for reef-building organisms over the Phanerozoic. Scientific Data 9:425.1 doi: 0.1038/s41597-022-01486-0
- Reddin C.J., Decottignies P., Bacouillard L., Barillé L., Dubois S.F., Echappé C., Gernez P., Jesus B., Méléder V., Nätscher P.S., Turpin V., Zeppilli D., Zwerschke N., Brind’Amour A., Cognie B. (2022). Extensive spatial impacts of oyster reefs on an intertidal mudflat community via predator facilitation. Communications Biology (in press) https://doi.org/10.1038/s42003-022-03192-4
- Reddin, C. J., Aberhan, M., Raja, N. B., & Kocsis, Á. T. (2022). Global warming generates predictable extinctions of warm-and cold-water marine benthic invertebrates via thermal habitat loss. Global Change Biology 28(19), 5793-5807.
- Siqueira, A.C., Kiessling, W., Bellwood, D.R. (2022). Fast-growing species shape the evolution of reef corals. Nature Communications 13, 2426, https://doi.org/10.1038/s41467-022-30234-6.
- Staples, T.L., Kiessling, W., Pandolfi, J.M., (2022). Emergence patterns of locally novel plant communities driven by past climate change and modern anthropogenic impacts. Ecology Letters, https://onlinelibrary.wiley.com/doi/abs/10.1111/ele.14016
- Yang, F., Sun, Y.D., Frings, P.J., Luo, L., E, J.W., Wang, L.N., Huang, Y.F., Wang, T., Müller, J., Xie, S.C. (2022). Collapse of Late Permian chert factories in the equatorial Tethys and the nature of the Early Triassic chert gap. Earth and Planetary Science Letters, 600, 117861. https://doi.org/10.1016/j.epsl.2022.117861
- Zhang, Z.T., Joachimski, M.M., Grasby, S.E., Sun, Y.D. (2022). Intensive ocean anoxia and large δ13Ccarb perturbations during the Carnian Humid Episode (Late Triassic ) in Southwest China. Global and Planetary Change, 217, 103942. https://doi.org/10.1016/j.gloplacha.2022.10394
- Beck, S.M., De Baets, K., Klug, C., Korn, D. (2021) Analysis of septal spacing and septal crowding in Devonian and Carboniferous ammonoids. Swiss Journal of Palaeontology 140: 21. https://doi.org/10.1186/s13358-021-00235-x
- Bond, D.P.G., Sun Y. (2021). Global warming and mass extinctions associated with Lage Igneous Province Volcanism. In: Ernst, R.E., Dickson, A.J., Becker, A. (eds.): Large Igneous Provinces: A driver of Global Environmental and Biotic changes, Geophysical Monograph, 255, 85-102. https://doi.org/10.1002/9781119507444.ch3
- Cisneros, J. C., A. M. Ghilardi, N. B. Raja, and P. P. Stewens (2021). The moral and legal imperative to return illegally exported fossils. Nat Ecol Evol. https://doi.org/10.1038/s41559-021-01588-9
- Dai, X., Korn, D., & Song, H. 2021. Morphological selectivity of the Permian-Triassic ammonoid mass extinction. Geology, 49(9), 1112-1116. https://doi.org/10.1130/G48788.1
- De Baets, K., Nätscher, P.S., Rita, P., Fara, E., Neige, P., Bardin, J., Dera, G., Duarte, L. V. , Hughes, Z., Laschinger, P., García-Ramos, J. C., Piñuela, L., Übelacker, C., Weis, R. (2021) The impact of the Pliensbachian–Toarcian crisis on belemnite assemblages and size distribution. Swiss Journal of Palaeontology 140: 25. https://doi.org/10.1186/s13358-021-00242-y
- Ghanizadeh Tabrizi, N., Ghaderi, A., Ashouri, A. R., & Korn, D. 2021. A new record of the Permian ammonoid family Cyclolobidae from Julfa (NW Iran). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 302(2), 221-230. https://doi.org/10.1127/njgpa/2021/1029
- Gliwa, J., Forel, M. B., Crasquin, S., Ghaderi, A., & Korn, D. 2021. Ostracods from the end‐Permian mass extinction in the Aras Valley section (north‐west Iran). Papers in Palaeontology, 7(2), 1003-1042. https://doi.org/10.1002/spp2.1330
- Klug, C., Schweigert, G., Hoffmann, R., Weis, R., De Baets, K. (2021) Fossilized leftover falls as sources of palaeoecological data: a ‘pabulite’ comprising a crustacean, a belemnite and a vertebrate from the Early Jurassic Posidonia Shale. Swiss Journal of Palaeontology 140: 10. https://doi.org/10.1186/s13358-021-00225-z
- Kocsis, Á.T., Zhao, Q., Costello, M.J., Kiessling, W. (2021). Not all biodiversity richspots are climate refugia. Biogeosciences 18, 6567-6578. https://bg.copernicus.org/preprints/bg-2021-179/
- Kocsis, Á. T., Reddin, C. J., Scotese, C. R., Valdes, P. J., & Kiessling, W. (2021). Increase in marine provinciality over the last 250 million years governed more by climate change than plate tectonics. Proceedings of the Royal Society B, 288, 20211342. https://royalsocietypublishing.org/doi/abs/10.1098/rspb.2021.1342
- Korn, D., Hairapetian, V., Ghaderi, A., Leda, L., Schobben, M., & Akbari, A. 2021. The Changhsingian (Late Permian) ammonoids from Baghuk Mountain (Central Iran). European Journal of Taxonomy, 776, 1-106. https://doi.org/10.5852/ejt.2021.776.1559
- Korn, D., Leda, L., Heuer, F., Moradi Salimi, H., Farshid, E., Akbari, A., Schobben, M., Ghaderi, A., Struck, U., Gliwa, J., Ware, D., & Hairapetian, V. 2021. Baghuk Mountain (Central Iran): high-resolution stratigraphy of a continuous Central Tethyan Permian-Triassic boundary section. Fossil Record, 24, 171-192. https://doi.org/10.5194/fr-24-171-2021
- Manes, S., Costello, M.J., Beckett, H., Debnath, A., Devenish-Nelson, E., Grey, K.-A., Jenkins, R., Khan, T.M., Kiessling, W., Krause, C., Maharaj, S.S., Midgley, G.F., Price, J., Talukdar, G., Vale, M.M. (2021). Endemism increases species’ climate change risk in areas of global biodiversity importance. Biological Conservation 257, 109070. https://doi.org/10.1016/j.biocon.2021.109070
- Mathes, G.H., Kiessling, W., Steinbauer, M.J. (2021). Deep-time climate legacies affect origination rates of marine genera. Proceedings of the National Academy of Sciences 118, e2105769118.https://www.pnas.org/doi/10.1073/pnas.2105769118
- Mathes, G.H., van Dijk, J., Kiessling, W., Steinbauer, M.J. (2021). Extinction risk controlled by interaction of long-term and short-term climate change. Nature Ecology & Evolution 5, 304-310. https://doi.org/10.1038/s41559-020-01377-w
- Nätscher, P.S., Dera, G., Reddin, C.J., Rita, P., De Baets, K. (2021). Morphological response accompanying size reduction of belemnites during an Early Jurassic hyperthermal event modulated by life history. Scientific Reports, 11, 14480.https://doi.org/10.1038/s41598-021-93850-0
- Nogué, S., Santos, A. M. C., Birks, H. J. B., Björck, S., Castilla-Beltrán, A., Connor, S., de Boer, E. J., de Nascimento, L., Felde, V. A., Fernández-Palacios, J.-M., Froyd, C. A., Haberle, S. G., Hooghiemstra, H., Ljung, K., Norder, S. J., Peñuelas, J., Prebble, M., Stevenson, J., Whittaker, R. J., Willis, K. J., Wilmshurst, J. M., Steinbauer, M. J., 2021 The human dimension of biodiversity changes on islands. Science, 372 (6541) 488-491. doi.org/10.1126/science.abd6706
- Rita, P., Weis, R., Duarte, L.V., De Baets, K. (2021). Taxonomical diversity and palaeobiogeographical affinity of belemnites from the Pliensbachian–Toarcian GSSP (Lusitanian Basin, Portugal). Papers in Palaeontology, 7, 1321-1349. https://doi.org/10.1002/spp2.1343
- Morphological traits of reef corals predict extinction risk but not conservation status. Global Ecol Biogeogr., 30, 1597– 1608. https://doi.org/10.1111/geb.13321 , , , , , . (2021).
- Raja, N.B., E. M. Dunne, A. Matiwane, T. M. Khan, P. S. Nätscher, A. M. Ghilardi, and D. Chattopadhyay (2021) Colonial history and global economics distort our understanding of deep-time biodiversity. Nat Ecol Evol. https://doi.org/10.1038/s41559-021-01608-8
- Raja, N.B., Kiessling, W. (2021). Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proc. R. Soc. B., 288, 20210545. http://doi.org/10.1098/rspb.2021.0545
- Sun, Y.D., Richoz, S., Krystyn, L., Grasby, S.E., Chen, Y.L., Banerjee, D., Joachimski, M.M. (2021). Integrated bio-chemostratigraphy of Lower and Middle Triassic marine successions at Spiti in the Indian Himalaya. Global and Planetary Change, 196, 103363
- Reddin, C. J., Kocsis, Á. T., Aberhan, M., & Kiessling, W. (2021). Victims of ancient hyperthermal events herald the fates of marine clades and traits under global warming. Global Change Biology 27 (4), 868-878. https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.15434
- Antell, G. S., Kiessling, W., Aberhan, M., & Saupe, E. E. (2020). Marine Biodiversity and Geographic Distributions Are Independent on Large Scales. Current Biology, 30(1), 115-121. https://www.sciencedirect.com/science/article/abs/pii/S096098221931437X?via%3Dihub
- Piazza, V., Ullmann, C. V., & Aberhan, M. (2020). Ocean warming affected faunal dynamics of benthic invertebrate assemblages across the Toarcian Oceanic Anoxic Event in the Iberian Basin (Spain). PLoS ONE 15(12): e0242331. https://doi.org/10.1371/journal.pone.0242331
- Reddin, C. J., Kocsis, Á. T., & Kiessling, W. (2020). Marine invertebrate migrations trace climate change over 450 million years. Global Ecology and Biogeography, 29(7), 1280-1282. https://onlinelibrary.wiley.com/doi/full/10.1111/geb.13114
- Eymann, C., Götze, S., Bock, C., Guderley, H., Knoll, A. H., Lannig, G., Sokolova, I.M., Aberhan, M. and Pörtner, H. O. (2020). Thermal performance of the European flat oyster, Ostrea edulis (Linnaeus, 1758)—explaining ecological findings under climate change. Marine Biology, 167(2), 1-15. https://epic.awi.de/id/eprint/51493/1/CE_SG_EurOyster_paleophys_MaBi20.pdf
- Götze, S., Bock, C., Eymann, C., Lannig, G., Steffen, J. B., & Pörtner, H. O. (2020). Single and combined effects of the “Deadly trio” hypoxia, hypercapnia and warming on the cellular metabolism of the great scallop Pecten maximus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 110438. https://www.sciencedirect.com/science/article/abs/pii/S1096495920300324, PDF
- Foster, W. J., Garvie, C. L., Weiss, A. M., Muscente, A. D., Aberhan, M., Counts, J. W., & Martindale, R. C. (2020). Resilience of marine invertebrate communities during the early Cenozoic hyperthermals. Scientific reports, 10(1), 1-11. https://www.nature.com/articles/s41598-020-58986-5
- Gliwa, J., Ghaderi, A., Leda, L., Schobben, M., Tomás, S., Foster, W. J., Forel, M.B., Tabrizi, N.G., Grasby, S.E., Struck, U., Ashouri, A. R. & Korn, D. (2020). Aras Valley (northwest Iran): high-resolution stratigraphy of a continuous central Tethyan Permian–Triassic boundary section. Mitteilungen aus dem Museum für Naturkunde in Berlin. Fossil Record, 23(1), 33-69. https://doi.org/10.5194/fr-23-33-2020
- Joachimski, M. M., Alekseev, A. S., Grigoryan, A., & Gatovsky, Y. A. (2020). Siberian Trap volcanism, global warming and the Permian-Triassic mass extinction: New insights from Armenian Permian-Triassic sections. Bulletin, 132(1-2), 427-443. https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/132/1-2/427/571663/Siberian-Trap-volcanism-global-warming-and-the?redirectedFrom=fulltext
- Piazza, V., Ullmann, C. V., & Aberhan, M. (2020). Temperature-related body size change of marine benthic macroinvertebrates across the early toarcian Anoxic event. Scientific reports, 10(1), 1-13. https://www.nature.com/articles/s41598-020-61393-5
- Reddin, C. J., Nätscher, P. S., Kocsis, Á. T., Pörtner, H. O., & Kiessling, W. (2020). Marine clade sensitivities to climate change conform across timescales. Nature Climate Change, 10(3), 249-253. https://www.nature.com/articles/s41558-020-0690-7
- Foster, W. J., Gliwa, J., Lembke, C., Pugh, A. C., Hofmann, R., Tietje, M., Varela, S., Foster, L.C., Korn, D. & Aberhan, M. (2020). Evolutionary and ecophenotypic controls on bivalve body size distributions following the end-Permian mass extinction. Global and Planetary Change, 185, 103088. https://www.sciencedirect.com/science/article/pii/S0921818119305739?via%3Dihub
- Sun, Y. D., Orchard, M. J., Kocsis, Á. T., & Joachimski, M. M. (2020). Carnian–Norian (Late Triassic) climate change: Evidence from conodont oxygen isotope thermometry with implications for reef development and Wrangellian tectonics. Earth and Planetary Science Letters, 534, 116082. https://www.sciencedirect.com/science/article/abs/pii/S0012821X2030025X?via%3Dihub
- Ullmann, C. V., Boyle, R., Duarte, L. V., Hesselbo, S. P., Kasemann, S. A., Klein, T., Lenton, T.M., Piazza, V. & Aberhan, M. (2020). Warm afterglow from the toarcian oceanic Anoxic event drives the success of deep-adapted brachiopods. Scientific reports, 10(1), 1-11. https://www.nature.com/articles/s41598-020-63487-6
- Schobben, M., Gravendyck, J., Mangels, F., Struck, U., Bussert, R., Kürschner, W. M., Korn, D., Sander, P.M. & Aberhan, M. (2019). A comparative study of total organic carbon-δ13C signatures in the Triassic–Jurassic transitional beds of the Central European Basin and western Tethys shelf seas. Newsletters on Stratigraphy, 52(4), 461-486. https://www.schweizerbart.de/papers/nos/detail/52/90527/A_comparative_study_of_total_organic_carbon_13C_si?l=EN
- Reddin, C. J., Kocsis, Á. T., & Kiessling, W. (2019). Climate change and the latitudinal selectivity of ancient marine extinctions. Paleobiology, 45(1), 70-84. https://www.cambridge.org/core/journals/paleobiology/article/abs/climate-change-and-the-latitudinal-selectivity-of-ancient-marine-extinctions/E2840B622F054ACD7D051A106E9E9D9E, PDF
- Rita, P., Nätscher, P., Duarte, L. V., Weis, R., & De Baets, K. (2019). Mechanisms and drivers of belemnite body-size dynamics across the Pliensbachian–Toarcian crisis. Royal Society Open Science, 6(12), 190494. https://royalsocietypublishing.org/doi/10.1098/rsos.190494
- Korn, D., Ghaderi, A., & Tabrizi, N. G. (2019). Early Changhsingian (Late Permian) ammonoids from NW Iran.
https://www.schweizerbart.de/papers/njgpa/detail/293/91491/Early_Changhsingian_Late_Permian_ammonoids_from_NW?af=crossref - Korn, D., Ghaderi, A., Ghanizadeh Tabrizi, N., & Gliwa, J. (2020). The morphospace of Late Permian coiled nautiloids. Lethaia, 53(2), 154-165. https://onlinelibrary.wiley.com/doi/10.1111/let.12348
- Miao, L., Dai, X., Korn, D., Brayard, A., Chen, J., Liu, X., & Song, H. (2019). A Changhsingian (late Permian) nautiloid assemblage from Gujiao, South China. Papers in Palaeontology. https://www.palass.org/publications/papers-palaeontology/7/1/article_pp329-351
- Piazza, V., Duarte, L. V., Renaudie, J., & Aberhan, M. (2019). Reductions in body size of benthic macroinvertebrates as a precursor of the early Toarcian (Early Jurassic) extinction event in the Lusitanian Basin, Portugal. Paleobiology, 45(2), 296-316. https://www.cambridge.org/core/journals/paleobiology
- Sun, Y. D., Zulla, M. J., Joachimski, M. M., Bond, D. P. G., Wignall, P. B., Zhang, Z. T., & Zhang, M. H. (2019). Ammonium ocean following the end-Permian mass extinction. Earth and Planetary Science Letters, 518, 211-222. https://www.sciencedirect.com/science/article/abs/pii/S0012821X19302407
- Korn, D., & Ghaderi, A. (2019). The Late Permian araxoceratid ammonoids: a case of repetitive temporal and spatial unfolding of homoplastic conch characters. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 292(3), 339-350. https://www.schweizerbart.de/papers/njgpa/detail/292/91157/The_Late_Permian_araxoceratid_ammonoids_a_case_of_?af=crossref
- Kocsis, A. T., Reddin, C. J., Alroy, J., & Kiessling, W. (2019). The R package divDyn for quantifying diversity dynamics using fossil sampling data. Methods in Ecology and Evolution, 10(5), 735-743. https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.13161
- Sun, Y. D., Richoz, S., Krystyn, L., Zhang, Z. T., & Joachimski, M. M. (2019). Perturbations in the carbon cycle during the Carnian Humid Episode: carbonate carbon isotope records from southwestern China and northern Oman. Journal of the Geological Society, 176(1), 167-177. https://pubs.geoscienceworld.org/
- Rita, P., De Baets, K., & Schlott, M. (2018). Rostrum size differences between Toarcian belemnite battlefields. Mitteilungen aus dem Museum für Naturkunde in Berlin. Fossil Record, 21(1), 171.
- Kiessling, W., Schobben, M., Ghaderi, A., Hairapetian, V., Leda, L., & Korn, D. (2018). Pre–mass extinction decline of latest Permian ammonoids. Geology, 46(3), 283-286.
- Kocsis, Á. T., Reddin, C. J., & Kiessling, W. (2018). The stability of coastal benthic biogeography over the last 10 million years. Global Ecology and Biogeography, 27(9), 1106-1120.
- Kocsis, Á. T., Reddin, C. J., & Kiessling, W. (2018). The biogeographical imprint of mass extinctions. Proceedings of the Royal Society B: Biological Sciences, 285(1878), 20180232.
- Schobben, M., Heuer, F., Tietje, M., Ghaderi, A., Korn, D., Korte, C., & Wignall, P. B. (2018). Chemostratigraphy Across the Permian‐Triassic Boundary: The Effect of Sampling Strategies on Carbonate Carbon Isotope Stratigraphic Markers. Chemostratigraphy Across Major Chronological Boundaries, 159-181.
- Schobben, M., Van De Velde, S., Gliwa, J., Leda, L., Korn, D., Struck, U., Vinzenz Ullman, C., Hairapetian, V., Ghaderi, A., Korte, C. & Newton, R. J. (2017). Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation. Climate of the Past, 13(11), 1635-1659.
- Martindale, R. C., & Aberhan, M. (2017). Response of macrobenthic communities to the Toarcian Oceanic Anoxic Event in northeastern Panthalassa (Ya Ha Tinda, Alberta, Canada). Palaeogeography, Palaeoclimatology, Palaeoecology, 478, 103-120.
- Dera, G., Toumoulin, A., & De Baets, K. (2016). Diversity and morphological evolution of Jurassic belemnites from South Germany. Palaeogeography, palaeoclimatology, palaeoecology, 457, 80-97.
Our Social Media
News